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CHORDWISE LOADING ANT) ARBITRARY SPANWX3E LOADING IN SUBSONIC FLOW ‘

By S. KvrzoFF, M. FRANCESFAISON,and HUGH C. DuBoaB

SUMMARY

The$eld of a uniformly loadedw“ng in subsonti~ is dis-
cussed in terms of the accekation poteniid. It t%shown that,
for thedesign of suchwings, th-?slope of themean cambersurface
at any pm”nlcan he deta-miwd by a line iniqration around the
wing boundary. By an additional line intqration around the
wing boundary, this mzthodis extated to include thecasewh-ere
the local 8ectionlift coefiien$ varieswith spanwise location (the
chordwise hmding at every section stallremuining uniform).

For the uniformly loaded un”ngof polygonal plan form, the
integrationsnece98aq to determinethe 10C4Z?slope of the wq%ce
and &?furl.hv intqration of the sl.opt%to delmnine the ordinm%
can be done analytically. An wtlin.e of tie ini!egratimwand
the resuliingformulas are included.

Calculatedresultsaregivenfor a sweptbmkmungwithuniform
chordwi-seloading and a highly tupired spanwiae loading, a
uniformly loadeddeltaun”ng,a uniformly loadedsweptbackmung,
and the same sweptback wn”ngwith uniform chordwnkeloading
but d?iptizal span load diebvlw.tion.

INTRODUCTION

The design of mean camber surfaces to sustain a specitied
mea distribution of lift at subsonic speeds involves basically a
relatively straightforward process: a system of bound and
trailing vortices is set up in the plane of the wing according
to the specilied distribution of lift, and the corresponding
verticnl velocity is calculated, by the Biot43avart law, at
points on the surface where the 100al slopes are desired.
Reasonably practical numerical and graphicol procedures
have been developed for performing this integration of the
veloci~ due to this distribution of vortices (see, for example,
ref. 1). If the chordwh Ioadihg is specified to be uniform,
as in a number of recent wingdesign studies, the problem is
basically simplified; as will be ihown, the solution can then be
reduced from a double integral over the wing area (or over the
wing area plus wake arm) to a line integral around the
boundary of the wing and, in the simplest cases, it can even
be reduced to a purely analytical procedure.

The purposes of the present report are to outline the basic
theory behind the solution of these problems involving uni-
form chordwise loading, to summarize the mathematical
application of the theory and the development of the required
formulas, and to describe the actual use of these derived
results in the design of mean camber surfaces for this type of
loading.

The basic theory of the uniformly loaded lifting surface is
reviewed fit. The particular case of the infinitesimally
wide, uniformly loaded longitudinal strip is next discussed,
together with the integration of such strips to form the whg
of arbitrary contour and arbitrary spanwiseloading. For the
uniformly loaded polygonal wing, closed expressions are
derived for both the local slope of the mean camber surface
and the local height of the surface (relative to the leading
edge). Sections of the mean camber surfaces of four wings
calculated by these methods are also presented.

SYMBOLS

$) Y) z streamwise, lateral, and vertical coordinates,
respectively (see fig. 1)

x’, Y’ coordinate of vortex element on wing boundary
u stream velocity
w vertical velocity induced by unit vortm (positive

upward)
P pressure
P density
c. wing lift coefficient
CJ wing section lift coefficient
c chord
z average chord
ds vortex element (vector)
q vector from vortex element to point
M Mach number
A aspect ratio
A sweep angle
Vortex-segment symbols:
(k YJ, (%, YJ eml points of vorkm segment; (y,> YJ

()~=tan-l ‘~

L=yl Csc CY

IM= —’yg Csc a

l=4@–2xL cos a+L’ ‘
m=.&+2xM cos a+M~
8=4(XI—X)1+~12

t=~i

Subscripts:
LE leading edge
TE trailing edge
I, It, KU cases I, II, and ID. of appendix

1SUIXXFEY&NAOA TN W, “DetmtdnMon of Mean Oarnlw Snrfam For WingsH8vimgUni&rm OhordwkaLmdJngand ArbitrarySpamvk I#Mlns in Sn&mio Flow” by
S. Katzot?,bL FrancmFakm, andHugh O. DuBc&o,1$53.
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BASICTHEORYFOR UNIFORMLYLOADEDWINGS
Application of acceleration potential.-In flow fields con-

sisting of a smallperturbation flow superimposed on a uniform
flow, the pressure is a potential (multiplied by – l/P, it is
frequently termed acceleration potential) that satisfies
Laplace’s equation (see, for example, ref. 2, pp.- 225-227).
In the field of a uniformly loaded lifting surface, then, the
pressure (relative to free+tream pressure) is “a harmonic
potential that must satisfy the following boundary condi-
tions:

(a) It has a uniform negative value over the upper face
of the lifting surface.

(b) It has a numerically equal, uniform positive value
over the lower face of the lifting surface. (That the upper-
and lower-surface pressures are equal and opposite is not,
perhaps, obvious merely from the fact that a pressure differ-
ence e.sists across the surface. If, however, the lift@ sur-
face is represented by a distribution of bound and trailing
vortices, as in ref. 1, this fact is immediately apparent.)

(c) It vanishes at infinity.
These boundary conditions, which uniquely define the pres-
sure throughout the field, are recognized as identical with
the conditions on the velocity potential in the field of a
closed vortm that coincides with the edge, or boundary, of
the lifting surface. Accordingly, the pressure at any point
in the field of a uniformly loaded lifting surface is equal in
value to the velocity potential of such a vortex, the strength
of which is the pressure difference between the upper and
the lower faces, or the lift per unit area. Correspondingly,
the pressure gradient at any point in the field is equal in
both magnitude and direction to the potential gradient [that
is, the velocity) associated with this vortex at that point;
and it can accordingly be determined by the Biot-Savart
law. For present purposes, ody the vertical component of
this gra~ent is of interest. The vortex should not, of
course, be confused with the lifting vortices of the usual
airfoil theory; the latter vortices are not used in the present
report.

The vertical acceleration of a fluid p-article is + ~ (see

fig. 1 for coordinate system), so that the vertical velocity
acquired by a particle which has come into the neighborhood
of the wing from a large distance upstream is the integral ~f

J
z laphthiscspression with respect to time, or ———,

where the factor dx/ D is the element of time. ‘&. ;r~r?o
simplify the notation, the same symbol z is used for both
the running variable and the upper limit.) All perturbation
velocities are assumed to be small so that the path of
integration, or the path of the fluid particle, is the line
y= Constant, z= Constant.

Dividing this vertical velocity by u gives the vertical
slope dz/dit of the streamline. In particular, if the integral
is evaluated for a point on the lifting surface itself, the local

Jz * dx,where theslope of the surface is given by ——
$ -m az

integration is along the line y= Constant, z= O. Here again
the small-perturbation theory assumesthat all displacements
from the straight undisturbed streamlines are so smill that
the path of integration may, with sufficient accuracy, be

\

/

FIGUREI.—Element of vortex on wing boundary showing mordhmto
and vector systems used in the application of the Biot-Savnrt law.

taken in the plane z= O, and, in particular, it asswea that
the vertical displacement of the trailing edge relative to tho
leading edge is so small that the boundary vortax may also
be taken in the plane z=O. The local height of the surface
z, relative to the leading edge, is the integral of this slopo, or

For any lift coefficient CL the pressure difference across

CL F, which, as prenothe lifting surface is ~ p . usly noted, is

numerically equal to the strength of the vortex that is as-
sumed around the edge of the projected plan form of the
lifting surface. Thus, finally, the local s~ope of the surface
is

. dz
J

:(7. ‘ Wdx—=—.
dx -m

(1)

where w is the vertical velocity (positive upward) in the
plane of the lifting surface fiduced by a unit vortex along
the edge of the surface. The local height of the surface,
relative to the leading edge, is then

(2)

The direction of rotation of the unit vortex is such that its
flow is upward through the surface of the wing; that is, tho
potential increases by unity along a path from the upper to
the lower wing surface around the edge of the wing.

Line integral for local slopes of uniformly loaded wing
with arbitrary plan form,—By equation (1), the local slope
dzldx maybe determined by evaluating the vertical vcdocity
w induced by the entire boundary vortex and then intqgrat-
ingwfrom-mtox. A more convenient method, however,
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is to evaluate the contribution to w induced by an infnitcsi-
mal element of the bounding vortex, to integrate this con-
tribution from – m to z (which is readily done analytically),
rmd then to integrate this result over all the elements of the
bounding vortex.

The differential form of the Biot43avart equation (see ref.
2, p, 167) for the induced velocity dw due to an element ds
of a unit vortex is

where q is the vector from the vorta element to the point
in question, and the direction of ds is taken as the direction
of advance of a right-hand screw rotating in the direction of
the circulation about ds (see fig. 1). For tie present problem,
where the point lies in the plane of the wing, this induced
velocity is in the zdirection and is given by

where ~~,y) is the point at which the induced velocity is
desired, and (z’, y’) is the location of the vortex element
(dx’, dy’) on the wing boundary.

Accordingly, by equation (l), the contribution of a bound-
ary element (dz’, dy’) of a uniformly loaded wing to the
slope of the wing surface at point (z, y) is

. df

1Jx-x’)’+(y-y’)’

The signs of dx’ and dy’ are deterrained horn the previously
mentioned convention for the direction of the vector ds (or
(dr’, dy’)); for example, both dz’ and dy’ are negative for
the leading-edge element shown in figure 1.

The net slope of the meari camber surface at the point
(z, y) is tho integral of the preceding expression around the
wing boundary, or

dz C=
$[

(X–x’)dx’. . ——
dz 8T @–Y’)J(x-ti’+(Y-Y’)’+

dd
--7+

dy’ 1 (3)
Y–Y d(x–x’)’+(y-y’)’

where the counterclockwise direction of , the integration
automatically takes care of the sigg. The problem of
determining the local slope of the mean camber surface at
the point (~, y) is thus reduced to the evaluation of this line
integral.

WINGS ~H ARBITRARYPLANFORM AND
ARBITRARYSPANWE3ELOADING

Wing considered as sum of uniformly loaded ohordtise
strips.-For the wing having uniform chordwise loading and
arbitrary spanwise loading, it is convenient to consider the
wing to be made of a series of uniformly loaded chordwise
strips of infinitesimal span. For each such strip (span dy’,
see fig. 2), the pressure field can be represented by the

.

‘N
l?mwm 2.—Wing composed of uniformly loaded ohordwiso strips of

span dy’ with a closed vortex superinqmsed on the boundary of
each strip.

velocity potential of a closed vortex superimposed on the
boundary of the strip. Each of these bound.@ vortices has,.
strength equal to the local pressure chfferemmAp between
the upper and lower.surfacea of the strip.

If, as in the preceding analysis, the spanwise loading is
uniform, all these closed vortices will be of the same strength,
so that the chordwise segments common to any two adjacent
strips cancel and only those vortex elements lying on’ the
boundary of the wing remain. The result is thus the same
as that previously discussed for the uniformly loaded wing
(eq. (3)). .

If, however, the spanwise loading is not uniform, the
closed vortices surround@ adjacent strips will bOof unequal
strength; vortex segments common to adjacent strips will
no longer cancel, and vortex elements lying on the wing
boundary vdl vary in strength along the boundary. The
contribution of these boundary vortex elements to the in-
duced velocity w cah still be summed by a line integration
around the wing boundary of the expression given in equa-
tion (3), except that CLmust be replaced by the local section
lift coefficient c,@’) and placed under the integral sign. The
contribution of the chordwise segments is derived in the
following paragraph.

StreamWise vortex segments,-The Biot-Savart formula
for the induced velocity due to the straight-line chordwise
vortex segment of unit strength is

w=& (Cos e’+cos 01) (4)
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where r, h, and h are defined in figure 3. With r and the
cosines expressed in Cartesian coordinates, this expression
becomes

1

{

Z—(z’+c) z—x’
‘=&&~ ,/[z–(Z’+c)]’+(y-y’-)’-4 (z–Z’)’+(y-y’)’ 1

where c is the local chord. The integral of this expression

from – co
1 dcl

to z, multiplied by —dcJ2 or —- — d ‘ (see eq.2d# y
(l)), gives the contribution to the aIopehorn “tie streamwise
vortex segment of strength corresponding to dcl and length
equal to the local chord:

WJop@=-8r@1_fl~ dy’ ([J(Z–ZH-(Y-+)2+(Z-Z’)1 –

[J{z–(z’+c)}’+(y-y’y+z-( z’+c)l)

Finally, integrating this last equation with respect to y’
across the span of the wing (from left to right) gives the
contribution of all these chordwise segments to the slope at
the point (x,y). It will be obsemed, however, that the term
within the second bracket in this equation is the same as

(L)’) .rm

\

-————
1

\, /
I

(X’+qy’)

FIGURE3.—Geometrical relationshipsfor straight-Iine chordwie.evortex
segments that occur rnth spanwiwvarying area loading.

that within the fimt bracket except that x’ is replncecl by
z! +c, the corresponding trailing-edge coordinate. Accord-
ingly, the integraI of this expression across the span can, for
convenience, be considered as the line integral

or
1

G $ dcl * [4(~-ti2+(H/’)2+(z–d (5b)

around the boundary of the wing.
The problem of determining the local slope of the mean

camber surface at point (z,Y) is thus reduced to the evaluation
of the line integrals (3) and (5), where the integrrd (6) is
omitted if there is no spamvise variation in the area lending
(or in the local lift coefficient CJ and where the locnl lift
coefficient c1replaces CLin equation (3) and must be brought
under the integral sign if there is a spanwise variation of c1.

COMPUTATION

Although computing the integranclsof expressions (3) nncl
(5) and then performing the integrations should be a fnirly
straightforward process, a short outline of suggested proce-
dures may be helpful. It may be noted at the beginning
that, since the slopes (and the integrals for the slopes) are
nondimensional, the results will be independent of the dimen-
sional scale chosen for the work; taking the root chord or
the semispan as unity will probably be most convenient.
It may also be remarked that a carefully drawn plan form of
the wing will be helpful in setting up the computations.

I@mrn6 of procedure for oomputing slopes of uniformly
loaded mean camber surfaoe.-Given the plan form of o
wing that is tQhave uniform area loading and a speciilecllift
coefficient, a possible procedure is as follows:

(1) Select points (z,v) on the surface where the slopes nro
to be obtained. In general, these points should lie olong
several selected chord lines, with perhaps four along ench
line.

(2) Select points (z’,y’) along the leading and trailing
edges where the integmmds of equation (3) are to be deter-
mined. In general, trailing-dge points should be at tho
same spanwise po~tions aa the leadingadge points.

(3) Consider the integral in equation (3) to be broken up
into two parts-one with respect to x’ and one with respect
to y’:

$[
1 z—Xf

1
+1 dx’

w-d J(x-x’y+(y-?/y
(Go)

and

(6b)

For each point (z,y), compute the values of the integmncls in
expressions (6a) and (6b) for all the (z’,y’) points.

(4) For each point (x,y), plot the i.ntegrandsof (6a) against
x’, plot the integrands of (6b) agaimt y’, and determine the

#

.
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mea of each (for example, by running the planimeter around
the curve in the direction corresponding to a counterclock-
wise movement of the variable point (z’,y’) around the wing
boundary).

(6) For each point (cc,y),sum these two areas&d multiply
by – CL/8Tin order to determine the local slope dzldx.

(6) The actual heights of the mean camber surface “along
the chosen chords are now determined by integrating the
slopes found in the preceding steps. The integration cannot
extend quite to the leading and trailing edges, however,
because the slopes cannot be’ readily determined very close
to the ends of the chord lines, where the slopes become
infinite. Near the ends, however, the mean camber lines of
the sections may be considered as NACA a= 1.0 mean lines
(ref. 3), and they may accordingly be filled in, with generally
adequate accuracy, by fitting NACA a= 1.0 mean lines
between the front and rear limits of the calculated segm&ts
of the mean camber lines and the leading and trailing edges.

The integral (6a) is actually improper, since the integrand
becomes intin.itewhere y’=y. The Cauchy principal value
exists, however, and is evaluated by ikst adding the inte-
grands at equal distances but on opposite sides from the
singular point and then integrating the sum. This method
will be further described in a subsequent section.

R6sum6 of procedure for computing slopes of a mean
aamber surface with uniform chordwise loading and arbi-
trary spanwise loading.-l’or an arbitrary spanwise loading,
an additional integration is required, together with a modi-
fication of the preceding integrations.

(1) Determine the integrals

!$[
/

L/’ J(Z–;QY-Y)d+1 x’ (7a)

and

(7b)

by the same process as was used for (6a) and (6b), except
that cl, being now a variable, must be brought inside the
integral.

(2) Determine the spanwise rate of change of local lift
coefficient dcJdy’ at points y’. Compute values of the
integrand in

Plot against y’ and integrate. This integral is also improper
and is treated as previously mentioned.

(3) For each point (z,Y), the local slope dz/dx is
,

& @tegral (8)–Integral (7a)–Integral (7b)]

Example.—In iigure 4 is shown the plan form of a swept
wing and the desired spanwise lift distribution. ~ an

example of the computation, integrals (7a), (7b), and (8)
will be obtained for the point designated P in the figure.
Points designated a . . . z and a’ . . . z’ are the points on
the boundary where the integrrmds were evaluated; the
primed symbols are used merely because more than 26 sym-
bols were needed. The origin was taken at the W@ apex
and the wing semispan was asaumedequal to unity.

The computation of the integrands at the points around the
boundary is given in table I. Nfost of the points were evenly
spaced, but near the singgmi~ (y’=y), the intervals were
reduced to one-tenth as much as most of the other intervals.

Figure 5 shows the plots of the integrands (multiplied by
l/81r or – l/8T) against z’ or y’ and also shows the method of
determining the Cauchy principal value at the singularity.
For example, in figure 5(c) it will be seen that the integrand
goes to m at the right of the singularity and to — co at the
left of the singularity. Algebraically add@ the iutegrands
at equal distancea from the singularity (for emmple, the
value at point b plus the value at point v, the value at point
c plus the value at point u, and so on) and plotting the sum
results in the section B1 of the curve, where the portion
nearest the singularity is obtained by extrapolation horn
point k. The desired integral (8) is finally determined by
running the planimeter along the path abBILVva’b’j’r’s’a.

& a further example of the intermediate steps in the
calculation of a mean camber surface, figure 6(a) is shown,
which is a plot of the slope dz/dx along the streamwise chord
through point P. The example calculation described in the
preceding paragraphs, it will be noted, gives the three in-
tegrals the sum of which provides one point on this dz/dx
curve of figure 6(a). In figure 6(b) is shown the correspond-
ing curve for the NACA a= 1.0 mean line, for cI=l.0, from
reference 3. The curve may be found useful in extra-
polating to the leading and trailing edges, as previously
mentioned.

As may be inferred horn the preceding r&mm6 of the
computations for one point P, the total effort required to
compute accurately a mean camber surface by the method
described is very large, although, accorc@ to the autho~’
experience, it is not at all prohibitive- llTevertheless,the
work is ideally suited to modern high~peed comput@
machinery-f or example, of the punched-card @-p-o that
consideration should be given to the use of such equipment
where it is available.

It may also be mentioned that two contour charts of the
integrands in (6a), (6b), and (8), with the factor c1or dcJdy
omitted, have been prepared on ti and maybe obtained on
request from the National Advisory Committee for Aero-
nautics. Their form is such that, if the transparency is
superimposed on a correctly scaled draw@ of the W@
plan form, with a boundary point (zf,y’) at the origin of the
chart, the contour value read at point (z,Y) is the desired
value of the integrand. The charts are satisfactorily
accurate except in the neighborhood of the singularities.
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Fmum 4.—Plan form and spamvise lift distribution of the wing for which esample calculations are shown in table I tmd in figures 5 rmd 6,

.
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TABLE I

COMI?UTATION OF INTEGRANDS FOR INTEGRALS 7a) (7b), AND (8)
&FOR POINT P (z=o.7707, y= O.2600) OF FIG Ri 4

477

m
n
o
P
~
r

0.7707
.4660
.4355
.4051
.8746
.3441
.3137
.2832
.2527
.2223
.1918
.1613
.1309
. koo4
.0699
.0394
.0090

–. 0215
–. 0520
–. 0824
–. 1129
–. 1434
–. 4481
–. 7627

– 1.0574
–1. 3621
– 1.6668
–2. 5271
–2. 2941
–2. 0611
– 1.8281
– 1.6951
– 1.3621
–1. 1291
–. 8961
–. 6631
–. 8961

– 1.1291
– 1.3621
– 1.5951
–1. 8281
–2. 0611
–2. 2941
–2. 5271
– 1.6668
– 1.3621
– L 0574
–. 7527
–. 4481
–. 1434

.1613

.4660

0.2500
.1260
.1125
.1000
.0875
.0750
.0625
.0500
.0375
.0250
.0125

0
–. 0125
–. 0250
–. 0375
–. 0500
–. 0625
–. 0750
–. 0875
–. 1000
–. 1125
–. 1250
–. 2500
–. 3750
–. 5000
–. 6250
–. 7500
–. 7500
–. 6250
–. 5000
–. 3750
–. 2500
–. 1250
0
.1250
.2500
.3750
.5000
.6250
.7500

1::%!
L 1250
L 2500
1.2600
1.1250
1.0000
.8750
.7500
.6250
.5000
.3750

0.8102
.4825
.4498
.4173

. %

.3199

.2876

.2555

.2237

.1922

.1613

.1316

.1035

.0793

.0637

.0631

.0780

.1018

.1296

.1594

.1902

.5131

.8409
1.1697
1.4986
L 8278
2.6360
23777
2.1209
1.8662
1.6146
1.3678
1.1291
.9048
.7078

1:%;
1.4986
L 7626
2.0267
2.2909
2.5551
2.8193
20834
1.7666
1.4554
1.1542
.8737
.6412
.5254
.5981

@

d

.0. 5880
.6725
.5700
.5669
.5637
.5604
.5569
.5536
.5501
.5459
.5419
.5373
.6329
.5279
.6225
.5168
.5115
.5059
.6009
.4947
.4885
.4831
. 4i23
.3261
.2206
.1006

0
0
.1006
.2206
.3261
.4123
.4831
.5373
.6726
.6880
.5725
.6373
.4831
.4123
.3261
.2206
1006

0.
0
.1006
.2206
.3261
.4123
.4831
.6373
.6725

dqldf

o
–. 214
–. 228
–. 244
–. 259
–. 273
–. 289
–. 300
–. 316
–. 331
–. 344
–. 360
–. 373
–. 387
–. 401
–. 415
–. 429
–. 444
–. 458
–. 470
–. 484
–. 498
–. 634
–. 770
–. 902

– 1.006
–. 380
–. 380

– 1.005
–. 902
–. 770
–. 634
–. 498
–. 360
–. 214
0
.214
.360
.498
.634
.770
902

1:005
.380

1:%:’
.902
.770

. %!

.360

.214

g [g+]

45900
9.0097
9.9722

11.1726
127161
147721
17.6479
21.9746
29.1773
43.5344
86.6130

-----------
–85. 0679
–41. 6986
–26. 2156
– 16.7288
–9. 3510
–4 8863
–2. 8005
–1. 8017
– L 2666
–. 9497
–. 2091
–. 0912
–. 0426
–. 0146
0
0

–. 0056
–. 0125
–. 0177
–. 0200
–. 0162
0
.0439
.1512
.1182
.0920
.0705
.0622
.0366
.0221
0092

0.
o
.0206
.0602
.1296
.2676

“1::%’
.27137

@*.

@l@

O.7259
L 1874
1.2672
1.3586
L 4663
1.5911
L 7409
1.9249
2.1530
24403
2.8195
3.3329
40525
6.1005
6.5889
8.1130
8.1062
6.4869
L 9204
3.8171
3.0646
2.5363
.8039
.3879
.1890
.0668

0
0
.0421
.1042
.1748
.2555
.3527
.4761
.6322
.8297

.%!

.3228

.2337

.1608

.0960

.0395
0
0
.0572
.1512

–! 6238
– 1.7942
–2. 0067
–2. 2475
—2 6345
–2 9298
–3. 4248
–4. 2824
–6. 9050

– 10.6677
----------

7.8300
3.1564
1.5954
.8557
.4949
.3345
.2607
.2218
.2001
.1865
.1648
.1811
.2026
.2195
.0816
.0552
.1344
.1079
.0782
.0495
.0227

0
–. 0149
0
.0432
.0760
.1088
.1414
.1748
.2070
.2329
.0888
.1266
.3610
.3586
.3633
.3600
.3966
.4931
.6101

*Integrand for (7a)
**Integrand for (7b)
***Integrand for (8)
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FIGURE5.—Determination

x’

(a) Determination of integral (7a).

of the mean surface slope dz/& at point P of the example wing of figure 4.

.
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FIcxrm 5.—Ckmthmed.
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(c) Determination of integral (8).

FIQURE5.—Concluded.
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+

(a) Calculated slopes, example wing.

FICiURD&-Calmlated slopM along streamwiee mean
through point P (see fig. 4) and slopee along NACA
lirmat cl= 1.0.

oamber line
u=l.O mean

POLYGONALWINGS WITH UNIFORMAREALOADING

For n uniformly loaded wing (uniform chordwise loading
rmd uniform c1 across the span) the boundary of which con-
sists of a number of straight-line segments, the integrations
to determine the local slope of the surface and the local
height of the surface may both be done analytically. The
previously derived equations can be integrated with respect
to z’ and y’, where the point (d,g’) moves from one end of
the straight-line se=gnent to the other. In the present
development, however, the straight-line segment will be
treated as a whole. The vertical induced velocity w due to
the unit bounding vortex is expressed as the sum of WA,

WB, . . ., the velocities due to the separate straight seg-
ments A, B, . . . (see fig. 7) which are given by the Biot-
Savart law (eq. (4)). The contribution of segment A to the

CL ‘ wA&
,slope of the surface at point (x,y) is, therefore, ——s2 .m
nnd the contribution” to the height of the surface at the
point (z,y) is

.6

.5

.4

.3

2 \

.1

.& \
dx

-. I

-2

-.3

-.4

: 5

(b)

-.60 ., .2 .3 .4 ~ .6 j. ~ ~ “lo
.~
c

(b) 810pesalong NACA a= 1.0mean line, for cl=l.O, from reference 3.

l?rGmm6.—Conuluded.

Summiug these expressions for all the seggmmts A, B,
.*. . gives the total slope or height of the mean camber
surface at the desired point.

As already noted, these integrals for the separate straight
segments can be evaluated analytically. Because the
mathematical manipulation and the resulting formulas are
somewhat lengthy, they are given in the appendix Three
different cases, distinguished by the relative geometry of
the vortex segment (that is, the segment of the wing bound-
ary) and the point (z,v) where the slope or height of the
surface is to be found, are discussed in the appendix. In
case I (@. 8), the path of integration from — coto x crosses
the segment; in case D (fig. 9), the path of integration does
not cross the segment; and in case Ill’ (fig. 10), which is a
special case of II, the path of integration is parallel to the
segment.

It should be noted that thissame problem has been treated
from a somewhat different viewpoint in reference 4.

COMPRESSIBILITYCORRECI’ION

If the mean camber surface is desired for a compressible
subsonic flow at Mach number ~, the Prandtl-Glauert
method, as dwcribed in reference 5, may be used. That is,
all the longitudinal (streamwise) dimensions of the wing me
stretched by the factor l/~~@’, so that the aspect ratio is
reduced by the factor ~=2 and the tangent of the sweep
angle is increased by the factor l/4=, and the mean
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FIQWEE 7.—Unit bounding vortex oomposed of separate stmight
segments A, B, C, D, E, and F superimposed on wing plan form
boundary.

camber surface is calculated for this fictitious wing in in-

compressible flow at a lift coefficient equal to the desired lift

coefficient multiplied by 1—M. The ordinates (values of z)

sc obtained will be precisely the ordinates of the mean

camber surfnce for the desired wing at the desired lift co-

efficient in the compressible flow at Mach number M.

EXAMPLESOF CALCULATEDMEAN CAMBERSURFACES

Sweptback wing, A= 1.74,—F~e 11 shows (by the
curved lines) mean camber lines calculated for the wing
already described in the example and in figure 4. The points
where the slopes were computed are indicated by small
circles. It should be noted that figure 11 and subsequent
similar figures do not represent oblique projections of the
wings. Rather, they show the true plan forms of the wings
(in the ~-plane) and the true mean camber lines (parallel to
the zz-plane); accordingly, the y- and z-axes coincide on the
figures.

In figure 11 and the subsequent similar ilgnms, all the
leding-edge points have been assumed to lie along a hori-
zontal line. This choice is, of course, arbitrary; that is, the
estent to which the present linear theory is applicable would
be essentially unaltered if, for example, the wing had a
reasonable amount of dihedral

Uniformly loaded triangular wing.-’lhe formulas derived
in the appendix for cases I and II were used to calculate the
man camber ‘surface of a triangular wing hav@ an angle

of sweep of 68.4° of the leading edge (aspect ratio, 1.67) such
that the wing should be uniformly loaded at unit lift co-
efficient in incompressible flow. Figure 12 shows tho plan
form and the chordwise camber lines for several spanwiso
stations. The dimensions shown correspond to a root chord
of unity; however, the z-scale is shown somewhat exaggerated.

Uniformly loaded swept wi.ug,-The formulas derived for
casea 1, II, and .131 were used to calculate the mean camber
surface of a swept wing of a9pect ratio 8, taper ratio 0.46
and 45° sweepback of the quarter-chord line such that tlm
wing should be uniformly loaded at unit lift coefficient at a
Mach number of 0.9. In accordance with the proposed method
of taking into account compressibility, the calculations were
made for the stretched wing in incompressible flow. The

stretching factor is
&

=2.29, so that the aspect ratio

of the stretched wing is 3.5 and the sweep of the quartor-
chord line is 66.46°. Figure 13 (a) shows this stretched wing
and the mean camber lines calculated for this stretchocl wing
in incompressible flow at unit lift coefficient. The dimcm-
sions shown correspond to a semispan of unity; howevcw,
the z-scale is shown somewhat reduced. The corresponding
mean camber lines - for the physical wing (A=8; design
CL= 1.0 at i14=0.9) should have 44 percent as much camber
as the mean camber lines for this stretched wing in the incom-
pressible flow.

Swept wing with elliptical span load distribution,-For the
wing plan form of the preceding example another mean
camber surface was calc~ated that, at unit lift coefficient nncl
a Nfach number of 0.9, would give uniform chordwise loading
but an elliptical span load distribution for the wing M o
whole. Mean camber lines for this case are presented in
figure 13 (b).

This example was also calculated, under the direction of
Mr. Robert R. Graham of the Langley Labomtory, by the
method of reference 1. The two results were in very good
agreement. No definite information ma obtained, howover,
with regard to the relative expediency of the two methods
(that of ref. 1 and that of the prea-entreport). Ono might
suppose that the present method would be preferable for
wings with uniform chordwise loading, since it is designed to
take advantage of this particular characteristic. The work
represented by table I and figure 5 (outlining the computat-
ions for the slope at one point), however, is by no means
small, so that such a presumption is not definitely sub-
stantiated by present experience. Perhaps the” fact that
the computations and integrations are of such form that
they, can be readily performed by modern high-speocl com-
puting machinery constitutes the most significant charac-
teristic of the present method.

LANGLEY &IBONAUTICAL LABORATORY,

lNATIONAL ~VISORY CO?LILITT13E FOR &EmoNAUTH3Sj

LANGLEY FIELD, VA., January 13, 1963.
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(a) Uniform area loading.

(b) Uniform ohordwise loading; elliptical epan load distribution.

FIQUEE 13.—kfeau camber lines for the stmtohed wing at unit lift coefficient in incompressible flow. Ai3pcct ratio, 3.6; taper ratio, 0.45; quarter-
ohord sweep angle, 66.46°; CL= 1.0. For the physical wing (aapect ratio, 8; taper ratio, 0.45; quarter+hord sweep angle, 45°) with unit lift
codloient at ilf =0.9, the mean camber lines ehould have 44 peroent as much “camber as the Iinexj shown here. Small figures chow span load
distributions. Cirolea indicate points for which z waa computed.
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APPENDIX

DEVELOPMJ3N’I’OF FORMULASFOR UNIFORMLYLOADEDPOLYGONALWINGS

Case I—Path of integration crosses vortex segment.—If
the vortex segnmut is the leading edge of the wing, the path
of integration may cross it. The vortex segment and the
path of integration for this case We show by the heavy

Jlimsinthe small sketch in iigure 8. The integral ‘ wdx

is improper because the integrand becomes infinite-“where
the path of integration cross- the vortcm The Cauchy
principal value, however, can be determined. Before the
integration is performed, the BiotA3avart formula (eq. (4))
is expas.ed in terms of the variable z and the iixed dimen-
sions of the vortm segment, where the origin is defied as
the point of intersection of the path of integration and the
vortm segment. Accordingly, the end points of the vortex
segment are (zI,YJ and (z@, where Yl>yj (see fig. 8). Let

L=y, csc a

M=—7Jz C9C a

Then it can be seen that

r=z sin a

L—z COSa= L—x COSa
C.os91= 1 &-2zL cos a+L’

M+Z COSa ikf+X COS a
Cost+ n-b ‘~3?+2zMc0S a+ilp

The contribution of w, to the slope of the mean camber
surface will be

G)1=+E7’Z. ~

It is of interest to note that, along the wing tip or the wing
root, where L or M goes to zero while x is positive, this slope
becom= iniinite.

The contribution to the height of the mean camber surface
will be the integral of this last expression; that is,

486

{
=8T—9: a z Cosa log. g2+2x log. sin a+z log, 2+

(z cos a–M sk’ a) log, (z+.kf cos a+~)–

(Z cos a+L sin’ a) log. (z–L cos a+l)–

}1
zloge(m+M+z cos CY)(l+L-Z cos a)+cos a(l—m) =

(1(2)
or, after substituting the indicated limits,

–c.
‘I=8m sin a {

Z cm a 10gc~+2x log, sin a+z log, d4-

(Z cos a–M sin’ a) log, (z+M cos a+m)–

(x COSa+L sin’ a) log, (z–L cos a+l)–

z log, (m+M+z cos cr)(l+L-z cos a)+

M sin’ a 10gcIkf(l+cos a)+

L sin’ a log, L(l–cos a)+[(l–~)– (L–M)] cos a
}

(A3)

Case II-Path of integration does not oross vortex seg-
ment.—The three small sketches in figure 9 show threo cases
in which the path of integration does not crow tho vortex
segment. In two of these cases, the segment lies along tho
m edge; in the third caae, the segment lies along the
leading edge but lies wholly to one side of the path of inte-
gration.

I?or the derivation of the formulas for cnse II, tlm origin of
coordinatca is specfied. ss the intersection of the path of
integration with the vortex or with the line of the vortex
extended. The end points of the vortex segment am again
designated (z,,Y,) and (a,yJ, where Y,>YZ. The angle a is
defined as befpre. Following the sign convention indicated
in figure 8, M will be considered positive if (w,yJ lioa to tho
left of the origin, and L will be considered positivo if (z,,vJ
lies to the right of the origin. For example, in figure 9, L is a
negative quantity, whereas M is a positive quantity.

For any of the three crisesshown in figure 9, the esprossion
for h is identicsl with that for w. Furthermore, the ex-
pression for

($3==-%EJ-
is identical in form with the expression (Al) derived for

dz
()z,

; that is, neither singular points in .fie integration nor

negative values of z, L, or M afFect the exqmssion for the
integral.
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()Integrating $. in order to obtain zn yields the same

expression for the indeiin.ite integral as was found in inte-

()
grating ~ ~~so that the only di.tlerenceabetween the ex-

pressions for z,, and z, arise from the different limits of inte-
gration—for zI, the limits were O and z, whereas for z~, the
limits are z~~ and cc;that is,

Znz m‘@dx
ILE dx II

–c.
‘%Tsin a{

z cos a log. ~+2z log. sin a+z log. $+

(z COs a–ill Si112a) log. (Z+ill cos a+71Z)–

(Z cos a+L si& a) log. (z–L cos a+l)–

}1
~log, (m+M+z cos a)(l+L—z cos a)+COS a(l—m) - =

‘LB

(A4)

Case III-Vortex segment parallel to free stream and
hence to path of integration (fig. 10).-Coordinates are
chosen so that the path of integration lies along y=O. The
end points of the vortex segment are (O,VJ and (z1,yJ where
Xl>o.

Then, from figure 10,

8=&-z)*+y12

t=’J~

xl—x xl—xCos fjl=-=
8 {(z,–z)’+yl’

Cos02=E=
x

t +%@

Then

(arl=-%r.w”’dx
.._% ‘S[ xl—x x–1dz

WA -. ~(X1–X)2+yl’+@+y12

=–* [@m-4(~1-4’+Y12+d (A5)

and

zm=–& ({(zl–z)~+z4w+

y? log, [zl—z+J(zl—z)’+yl’]+

y? log’(z+dw)}–{(zl–%z?) 4(%-%.)’+?/1’+

z= 4zFm+YlMc [~1–$LB+4(~l–~LE)’+Y?l+

‘y? log. [zL.+&?TiF?+f@(=m)l}) (A6)

For equations (A5) and (A6), the direction of rotation of
the vortex segment was w.sumed to be that corraponding
to the right wing tip. For the left wing tip, the signs
should be revemed. Stated differently, the equations will
be correct in either ease if yl in the first factor on the righh
hand side is replace by IY,I.
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